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We theoretically study second-harmonic generation in two-dimensional nonlinear photonic crystals and obtain a
unified expression that combines nonlinear Raman–Nath diffraction, Čerenkov-type second-harmonic genera-
tion, and nonlinear Bragg diffraction. The analytical solution is deduced, and the theoretical result coincides
well with the nonlinear Raman–Nath, nonlinear Čerenkov, and nonlinear Bragg diffraction phase-matching
conditions. This method has potential applications in second-harmonic generation of more complicated two-
dimensional and even three-dimensional nonlinear photonic crystals. © 2017 Optical Society of America
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1. INTRODUCTION

Quasi-phase-matched nonlinear frequency-conversion proc-
esses based on periodical domain reversed ferroelectric crystals
have been widely investigated, such as second-harmonic gen-
eration (SHG), sum-frequency generation (SFG), difference-
frequency generation (DFG), and so on. As special nonlinear
interfaces, domain walls and nonlinear crystal boundaries have
shown many strange features and nonlinear effects different
from uniform bulk media in nonlinear frequency-conversion
processes. In the vicinity of these nonlinear interfaces, en-
hanced nonlinear Čerenkov radiation can be observed, which
arises from the lattice distortion or internal local electrical field.
For example, a pair of symmetrically distributed Čerenkov
second-harmonic generation (CSHG) dots could be generated
when the fundamental wave (FW) propagates along the do-
main wall [1]. In the boundary of nonlinear crystals, CSHG
dots could also be observed [1,2]. In addition, even enhanced
CSHG could be obtained in the interface of two different
nonlinear media [1]. Not limited to these special nonlinear in-
terfaces, the most intensive studies about CSHG were on a
variety of ferroelectric crystals. For example, CSHG could be
generated in various one-dimensional (1D) nonlinear photonic
crystals [2], and two-dimensional (2D) nonlinear photonic
crystals such as rectangular, annular, decagonal, short-range
ordered, and even random nonlinear photonic crystals [3–6].
In these ferroelectric crystals, CSHG, nonlinear Raman–Nath

diffraction (NRND), and nonlinear Bragg diffraction (NBD)
could be observed when the FW propagates along the transverse
direction (perpendicular to traditional quasi-phase-matched
(QPM) direction) of the crystal. As we know, nonlinear
Čerenkov radiation is an autolongitudinal phase-matched proc-
ess [1–7]. Different from nonlinear Čerenkov radiation, NRND
is the SHG process that meets the transverse phase-matching
condition [8–12], and it comes from the second-harmonic wave
diffraction effect of different ferroelectric domains in ferroelectric
crystals. As for NBD, it is a diffraction effect that meets both the
transverse and longitudinal phase-matching conditions [11].
Compared with NRND and CSHG, NBD has a higher conver-
sion efficiency because it meets the complete phase-matching
condition. The NBD and multiple-order NRND has been
observed and quantitatively analyzed in 1D photonic crystals
[8,9,13]. In addition, NRND has been theoretically studied
in rectangular [10] and annular [11,12] 2D nonlinear photonic
crystals.

Although the theory of CSHG, NRND, and NBD in 1D
nonlinear photonic crystals has been deeply discussed, the non-
linear process in 2D nonlinear photonic crystals has still rarely
been investigated in theory. Theoretical studies in 2D photonic
crystals merely stay at qualitative and incomplete analysis;
for instance, NRND is determined by the transverse phase-
matching condition. It is only a cursory and nonquantitative
description of the SHG of 2D nonlinear photonic crystals.
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Hence, how to obtain a uniform expression to describe the
SHG, which combines NRND, CSHG, and NBD of 2D non-
linear photonic crystals, has become an urgent issue.

In this study, we start from the nonlinear coupled-wave
equations [1,14], and then obtain a detailed analytical expres-
sion of the SHG of 2D nonlinear photonic crystals. The ana-
lytical result is a uniform expression, describing the nonlinear
SHG, which combines NRND, CSHG, and NBD in 2D non-
linear photonic crystals. The SHG of several representative
styles of 2D photonic crystals, including annularly, squarely,
and hexagonally poled structures, was simulated, and the results
were highly consistent with previous published experimental
results in [3–5,10–12].

2. THEORETICAL MODEL AND ANALYSIS

We assume that the FW propagates along the z-axis, as shown
in Fig. 1, and the periodic domain reverse pattern of the sample
is a 2D distribution in the xy plane. If FW is a Gaussian beam
and the modulation in the z-axis direction is neglected for sim-
plicity, the dispersion function of amplitude will be written as

F �x; y� � e−
x2�y2

w2 , where w is the beam waist. The amplitude of
FW is assumed to be constant considering the high energy of
the pump and low conversion efficiency of the nonlinear proc-
ess. Considering the slowly varying envelope approximation,
the coupled-wave equation [1,14] can be expressed as8>>>><

>>>>:

∂A1

∂z � 0�
∂
∂z � i

2k2
∂2
∂x2 � i

2k2
∂2
∂y2

�
A2�z; x; y�

� −i 2πk2n22
d eff g�x; y�jA1j2F�x; y�2ei�k2−2k1�z

; (1)

where A1 and A2�z; x; y� are the amplitudes of the FW and
second-harmonic (SH) wave, respectively. d eff is the effective

second-order susceptibility. F �x; y� � e−
x2�y2

w2 is the Gaussian
distribution function of the FW, k1 and k2 are the wave vectors
of the FW and SH, respectively. n2 is the refractive index of
the SH. g�x; y� is the structure function of the nonlinear crys-
tal. In periodically modulated nonlinear photonic crystals,
g�x; y� can be written as an expansion of Fourier series

g�x; y� � P
n
P
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y�, where cnm represent the

Fourier coefficients. And finally, the SH intensity I 2 can be
obtained as follows:
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ffiffiffi
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From Eqs. (2)–(4), I 2 is dominated by the factors F 1�kx�,
F 2�ky�, and sinc2��k2 − 2k1 − k2x�k2y

2k2
� z
2
�. Obviously, the indexes

of F 1�kx� and F 2�ky� are negative or zero. If the indexes are
negative, I 2 will be strongly attenuated. Only if the indexes
are all zeros will I2 be enhanced. We should also note that,

I 2 partly depends on the factor sinc2��k2 − 2k1 − k2x�k2y
2k2

� z2�, be-
cause it would reduce rapidly as jk2 − 2k1 − k2x�k2y

2k2
j increases.

That is to say, I 2 is enhanced under the conditions kxΛx −

2nπ � 0 and kyΛy − 2mπ � 0 or k2 − 2k1 −
k2x�k2y
2k2

� 0. The
conditions of kxΛx − 2nπ � 0 and kyΛy − 2mπ � 0 are con-
sistent with the transverse phase-matching conditions of
NRND, so the factor jPn

P
m cnmF 1�kx�F 2�ky�j2 mainly de-

scribes NRND.
We assume k2z is the z-component of k2, so

k2z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 − �k2x � k2y �

q
: (5)

For k22 ≫ k2x � k2y , the Taylor expansion of Eq. (5) can be
expressed as

k2z � k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2x � k2y
k22

s
� k2

�
1 −

k2x � k2y
2k22

−
�k2x � k2y �2

8k42
−…

�
:

(6)

Ignoring higher-order terms in Eq. (6), then we obtain

k2z � k2

�
1 −

k2x � k2y
2k22

�
� k2 −

k2x � k2y
2k2

� 2k1: (7)

Obviously, this is consistent with the autolongitudinal
phase-matched condition of Čerenkov radiation [1,15].

Therefore the function sinc2��k2 − 2k1 − k2x�k2y
2k2

� z
2
� plays a lead-

ing role in CSHG. The size of the CSHG radius RCSHG �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2y

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2�k2 − 2k1�

p
only depends on the wave-

length of the FW, because the values of k1 and k2 are uniquely
determined by the Sellmeier equations [16].

3. SIMULATION AND RESULTS ANALYSIS

A. SH Intensity Simulation
The SHG of three specific examples of 2D nonlinear photonic
crystals are simulated.

Fig. 1. Schematic illustration of SHG in a 2D nonlinear photonic
structure.
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The structures of 2D nonlinear photonic crystals and the
corresponding simulated SH patterns are shown in Fig. 2.
For simplicity, lithium niobate crystal is used in our simulation.
The annularly, squarely, and hexagonally poled structures are
shown in Figs. 2(a), 2(c), and 2(e), respectively. The brown
areas represent g�x; y� � 1, and the blue areas represent
g�x; y� � −1. The wavelength of FW λ1 � 0.8 μm, and the
wavelength of SH λ2 � 0.4 μm. The beam waist of the input
Gaussian beam is w � 50 μm, and interaction distance is
z � 1000 μm. The type I �oo − e� phase-matching condition
is used in our simulation. The refractive indices of the ordi-
nary FW and extraordinary SH waves are n1 � 2.255 and
n2 � 2.331, respectively [16]. The wave vectors of ordinary
FW and extraordinary SH waves in the crystal are k1 �
17.713 μm−1 and k2 � 36.615 μm−1, respectively. These
parameter values stay the same in all the following simulations.

In the annularly poled structure, a polar coordinate was used
and the 2D annularly poled structure is only 1D periodical
along the r direction. The modulated period Λr � 15 μm,
and the duty ratio Dr � 1∕2, then the Fourier coefficients
and the factor F �kr� could be written as�

cn � − i�einπ−1�
2nπ n ≠ 0

cn � 0 n � 0
; (8)

F �kr� � w
ffiffiffi
π

2

r
e
−w

2�krΛr −2nπ�2
8Λ2r � w

ffiffiffi
π

2

r
e
−
w2� ffiffiffiffiffiffiffiffi

k2x�k2y

p
Λr −2nπ�2

8Λ2r : (9)

As shown in Fig. 2(b), in the circularly poled structure, the
CSHG and the multiple-order NRND both display as rings.
It is consistent with the experiment in [11,12]. NBD does not
exist in this simulation, because the transverse and longitudinal
phase-matching conditions are not satisfied simultaneously.

In the squarely poled structure, a rectangular coordinate was
used, and Λx � Λy � Λ � 15 μm; the duty ratio Dx � 1∕2
and Dy � 1∕2 are assumed. The Fourier coefficients, the
factors F 1�kx� and F 2�ky� could be written, respectively, as8>>>>>>><
>>>>>>>:

cnm � − e−i�2m�n�π
4mnπ2 �eimπ − 1��einπ − 1�

×�eimπ � ei2mπ � ei2�m�n�π − ei�2m�n�π�
mn ≠ 0

cnm � i�e−imπ−1�
2mπ n � 0; m ≠ 0

cnm � i�e−inπ−1�
2nπ n ≠ 0; m � 0

cnm � 1
2 n � 0; m � 0

;

(10)

F 1�kx� � w
ffiffiffi
π

2
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e
−w

2�kxΛx −2nπ�2
8Λ2x ; (11)

F 2�ky� � w
ffiffiffi
π

2

r
e
−
w2�kyΛy−2mπ�2

8Λ2y : (12)

As shown in Fig. 2(d), in the squarely poled structure, the
CSHG displays as a ring, and the multiple-order NRND
displays as square. The brightest areas of NRND are in four
directions corresponding to (1, 0), (0, 1), �−1; 0�, and
�0; −1�, and it is consistent with the experiment in [4].
There are some bright points in the CSHG ring (NBD peaks),
because their transverse and longitudinal phase-matching con-
ditions are satisfied simultaneously.

In the hexagonally poled structure, Λx � 2Λ � 8 μm and
Λy � 2

ffiffiffi
3

p
Λ � 8

ffiffiffi
3

p
μm are assumed. The Fourier coefficients,

the factors F 1�kx�, F 2�ky� could be written, respectively, as8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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h
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8n2π2

h
2e

inπ
3 �1�ei2nπ��einπ−1−inπ�

−�ei2nπ−1��ei2nπ−1�i2nπ�
i n≠0;n�m

cnm� e−inπ
8n2π2

h
4e

i2nπ
3 −1−ei4nπ�i2nπ

�ei2nπ�2−i2nπ��e
i5nπ
3 �−4�i4nπ�
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cnm�3
4 n�m�0

;

(13)

Fig. 2. Structures of 2D nonlinear photonic crystals and the corre-
sponding simulated SH intensity. (a) Annularly poled structure;
(c) squarely poled structure; (e) hexagonally poled structure. The white
dotted line areas in (a), (c), and (e) represent the minimum 2D period
areas. (b), (d), and (f ) are the corresponding simulated SH intensity,
respectively.
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As shown in Fig. 2(f ), in the hexagonally poled structure,
the CSHG displays as a ring, and the multiple-order NRND
displays as hexagonal. The brightest areas of NRND are
in six directions corresponding to (1, 0), � ffiffiffi

3
p

∕2; 1∕2�,
�− ffiffiffi

3
p

∕2; 1∕2�, �−1; 0�, �− ffiffiffi
3

p
∕2; −1∕2�, and � ffiffiffi

3
p

∕2; −1∕2�,
and it is consistent with the experiment in [17]. There are also
some intensive NBD peaks in the CSHG ring, the same as the
case of the squarely poled structure.

In previous research, the analysis of the CSHG intensity was

incomplete, such as ICSHG ∝ z2 sinc2��k2 − 2k1 − k2x�k2y
2k2

� z
2
� [4],

and it did not take into account the contribution of the
factor jPn

P
m cnmF 1�kx�F 2�ky�j2. From Eqs. (2)–(4), one

can see that the NRND and CSHG intensities are affected
by each other. The values of jPn

P
m cnmF 1�kx�F 2�ky�j2

and sinc2��k2 − 2k1 − k2x�k2y
2k2

� z2� dominate the change of I 2
simultaneously. Thus the intensity of the CSHG ring is not
constant.

B. Dependence of SHG Intensity on the Duty Ratio
Next, we specifically analyze the SHG in a squarely poled struc-
ture. From Eqs. (2) and (10), it is obvious that the �n; m�-order
NRND intensity is proportional to jcnmj2. However, there is
no nonzero even-order NRND in the condition ofDx � Dy �
D � 1∕2, because jcnmj2 equal to zeros for n or m is a nonzero
even number. That is to say, the multiorder NRND intensities
are affected by the duty ratio. Therefore, we simulate the non-
zero even-order and odd-order NRND intensities, respectively,
by changing the duty ratio. Dx � Dy � D is assumed for sim-
plicity, and the Fourier coefficients are obtained in Eq. (13).
As shown in Fig. (3), we display the (1, 11)-order and
(1, 12)-order NRND SH intensities depending on the duty
ratio. One can see that both the even- and odd-order NRND
intensities equal to zeros for D � 0 or D � 1, because it
means no periodical reversed domains. In addition, the
(1, 11)-order NRND intensity reaches the maximal value,
and the (1, 12)-order NRND intensity reaches the minimum
value for D � 1∕2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

cnm � e−i2mπ
4mnπ2 ��−2ei2mπ � ei2Dmπ

� ei2�1�D�mπ��ei2Dnπ − 1� − 4ei�m�2Dm��D−1�n�π

× sin mπ sin�D − 1�nπ�
mn ≠ 0

cnm � i
2mπ �−2D� e2i�−1�D�mπ

� �−1� 2D�ei2Dmπ � n � 0; m ≠ 0

cnm � i
2nπ �−2D� e2i�−1�D�nπ

� �−1� 2D�ei2Dnπ � n ≠ 0; m � 0

cnm � 1 − 2D2 n � 0; m � 0

: (16)

C. Generation of NBD
In Fig. 2(d), one can see that the NRND intensity is enhanced
near RCSHG. This phenomenon can be treated as the resonance
effect of NRND and CSHG [18]. When the transverse and
longitudinal phase-matching conditions are exactly satisfied
at the same time, the NBD will be generated [11]. In order
to generate the high-efficiency NBD, we can change the modu-
lated period to an appropriate value. For example, as shown in
Fig. 4, the bright NBD ring in the circularly poled structure is
obtained by changing the value of the modulated period to
Λr � 14.1379 μm, which is derived from the equa-
tion RCSHG �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2�k2 − 2k1�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2nπ∕Λr�2

p
.

D. Dependence of SHG Intensity on the Incident
Polarization Angle
In fact, the effective nonlinear coefficientd eff inEq. (1) depends on
the incident polarization angle of FW. In lithium niobate crystal,
d eff � d 31 sin θ − d 22 cos θ sin 3φ for type I phase-matching
conditions, where θ is the incident angle of FWvector correspond-
ing to the z-axis, and φ is the FW azimuth in the xy plane. In our
simulation, FW is incident along the z-axis, so θ � 0, d eff �
−d 22 sin 3φ. Thus we can obtain the SHG intensity for different
incident polarization angles of the FW as follows:

I 2 �
4π2k22d

2
22

n42
sin2 3φjA1j4z2

���Xn

X
m
cnmF 1�kx�F 2�ky�

���2
× sinc2

��
k2 − 2k1 −

k2x � k2y
2k2

�
z
2

�
: (17)

Fig. 3. Even order and odd order NRND SH intensity depending
on the duty ratio. The red line represents (1, 11)-order NRND, and
the blue line represents the (1, 12)-order NRND.
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Inspired by the analytical results, we can obtain the SH in-
tensity distribution in all the incident polarization angles and
more 2D nonlinear photonic crystals. One can also design the
pattern of 2D nonlinear photonic crystals to realize any SH
distribution.

4. CONCLUSIONS

In summary, we theoretically studied the SHG of 2D nonlinear
photonic crystals and obtained a uniform expression that
combines NRND, CSHG, and NBD. Annularly, squarely, and
hexagonally poled structures are calculated. The nonlinear
Čerenkov radiation rings and multiple-order Raman–Nath dif-
fraction peaks could be observed in the simulated results. The
results not only agree well with the nonlinear Čerenkov and
nonlinear Raman–Nath phase-matching conditions, but also
correspond with the experiment phenomenon. What is more,
we also obtain the NBD generation by changing the polarized
period to an appropriate value. The theoretical method used
in this work provides an effective way to study nonlinear
CSHG and NRND at the same time. In addition, this method
has potential applications in SHG of 2D and even three-
dimensional nonlinear photonic crystals, which involves more
complicated modulation on the nonlinear susceptibility.

Funding. National Natural Science Foundation of China
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